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Abstract   
We continue the series of papers, devoted to the investigation and simplification of 

the dynamical equation, governing the structure of the stationary elliptical accretion discs. 
These studies are in the frameworks, specified according to the model of Lyubarskij et al. 
[7]. In addition to the previous examinations, we find one more linear relation between the 
coefficients of this second order ordinary differential equation, which enables us to 
eliminate effectively at least four of them. This is in the course of our approach to reduce 
the number of these functions, depending on the eccentricity, its derivative and the power n 
in the viscosity law η = β Σ n. They appear in the equation during the process of averaging 
(i.e. integrating) over the azimuthal angle of the elliptical orbits. At the present stage of the 
investigations, there still remain three integrals of the indicated type. Except the case of 
integer values of n, their analytical solutions are not known. In connection with the linear 
dependence or independence of these functions (this is a subject of our future studies), the 
dynamical equation of the elliptical accretion discs may be split into a system of 
corresponding number of more simple equations about the unknown eccentricities of the 
particle orbits. Such an approach is in accordance with our base line, carried out through 
the referred series of papers, to make a progress, as much as possible, into the solving of 
the task by means of purely analytical methods. And only when the further advance in this 
way (if the final solution is not already attained) is so complicated, that it is impasse, to use 
numerical simulations.     
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1. Introduction 
   

There are numerous observational examples of accretion discs, 
orbiting around one of the components in a binary stellar system. The 
observational evidences, proving the existence of such astronomical objects, 
are based mainly on the accretion processes on to the compact object, 
located at the center of the disc. It may happen that the supply of mass to the 
central object can vary for different physical and geometrical reasons. This 
is possible to occur during the state transitions of the accretion flow or due 
to the variable interactions in the eccentric binary system. Such an activity, 
in principle, is a subject of damping by the viscosity of the disc matter. The 
mass supply on to the primary star (black hole, neutron star, white dwarf) is, 
in the end, determined by the mass supply at the outer disc edge. The 
authors of the investigation [1] compare this physical process for two 
accretion disc models: such as with finite and with infinite sizes. They find 
significant differences between these two cases. Namely, the infinite disc 
solution overestimates the viscous damping. They conclude that, generally 
speaking, the damping becomes very strong when the viscous time at the 
outer edge of the disc turns longer than the modulation time scale [1]. We 
consider the above example, in order to underline how important may be the 
right evaluation even of a single parameter, when we describe the accretion 
flow events. 

The variations of the properties of the accretion discs are subject not 
only to internal changes of their parameters, but also as consequences of 
external influences on the stellar system. The interactions between a “star + 
accretion disc” system and another star will perturb the disc, possibly 
resulting in significant modifications of the disc structure and its physical 
properties. It is suggested that such encounters are capable to trigger 
fragmentation of the disc, to form brown dwarfs or gas giant planets [2]. In 
the later paper are simulated star-star encounters, where the primary star has 
a self-gravitating, marginally stable protostellar disc, and the secondary star 
has not disc. The results of this investigation of the variations of the disc 
structure and its dynamics may be summarized in the following way. The 
stellar encounter is to prohibit the fragmentation, because compressive and 
shock heating stabilizes the disc and the radiative cooling is insufficient to 
trigger the gravitational instability. The conclusions from these simulations 
[2] show, that the encounter strips the outer regions of the disc. This can be 
realized either by tidal tails or by a capture of matter to form a disc around 
the secondary star. As a final result, the interaction triggers a readjustment if 
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the initially existing primary accretion disc turns to such with a steeper 
surface density profile. We conclude from such studies, that accretion discs 
have not only good possibilities to survive the encounters with the other 
stars, but also to preserve their relatively smooth spatial distribution of 
different physical parameters, characterizing the global accretion flow. It is 
worthy to note, that the fractal concepts have recently been introduced in 
the accretion disc theory as a new feature. As pointed out by Roy & Ray [3], 
due to the fractal nature of the flow, its continuity condition undergoes 
modifications. They show (through completely analytical solutions of the 
equilibrium point conditions), that their results give indications, that the 
fractal properties enable the flow to behave like an effective continuum of 
lesser density. The mass accretion rate exhibits a fractal scaling behavior, 
and the entire fractal accretion disc is stable under linearized dynamic 
perturbations. 

As we know, the accretion discs in the binary stellar systems are 
frequently occurred objects and naturally arises the question about the 
relation of the shape of the disc and the eccentricity of the binary orbit. 
Marzari et al. [4] study the evolution of circumstellar massive discs around 
the primary star of a binary system. Especially, they concentrate on the 
computation of the disc eccentricity and its dependence on the binary orbit 
eccentricity. The conclusions are that the self-gravitation of the massive 
discs leads to discs that have (on average) low eccentricity. They establish 
that the orientation of the disc, computed with the standard dynamical 
method, always librates, instead of circulating as in the simulations without 
self-gravitation. The simulations show that the accretion disc eccentricity 
decreases with the binary eccentricity. This result is found also in models 
without self-gravitation. Generally speaking, the investigation [4] is in 
agreement with the statement that the disc self-gravitation appears to be an 
important factor in determining the evolution of the massive accretion discs 
in the binary systems. One additional complicating factor, which possibly 
affects the shape of the accretion flow, is its orientation with respect to the 
spin axis of the central body. Modelling of the overall shape of an accretion 
disc in a semidetached binary system is performed, for example, in the paper 
of Martin et al. [5]. In this investigation, the mass is transferred on to a 
spinning black hole, which spin axis is misaligned with the orbital rotation 
axis of the binary. It is assumed that the accretion disc around the black hole 
is in a steady state. It turns out, that its outer regions are subject to 
differential precession, caused by the tidal torques of the companion star. 
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The later tend to align the outer parts of the disc with the orbital plane. But 
the inner regions of the disc are subject to differential precession caused by 
the general relativity action (Lense-Thirring effect). Such an influence tends 
to align the rotation of the inner parts of the accretion disc with the spin of 
the black hole. There are many other examples, both theoretical and 
observational, illustrating that the disc midplane may be inclined relative to 
the binary orbital plane. Under suitable physical conditions, similar 
geometrical configuration is expected to induce warping and rigid body 
precession of the disc. Fragner & Nelson [6] find that thick discs (with 
aspect ratio = 0.5 and low viscosity parameter α) precess as rigid bodies 
with very little warping or twisting. They are observed to align with the 
binary orbital plane on the viscous evolution time. On the other hand, 
thinner discs with higher viscosity, in which warp communication is less 
efficient, develop significant twists, before to achieve a state of rigid body 
precession. Under the most extreme conditions considered in [6] (with 
aspect ratio = 0.01; α = 0.1 and α = 0.005), it is established that the accretion 
discs can become broken or disrupted by the strong differential precession. 
Discs that become highly twisted are observed to align with the binary 
orbital plane on time scales much shorter than the viscous time scale and, 
possibly, on the precession time [6]. These examples, concerning the 
complicated internal and external interactions in the accretion flows, 
demonstrate some of the difficulties, which may occur, when the shape of 
the disc must be established in a quantitative manner. In the present paper, 
we investigate a particular accretion disc model, having an elliptical shape. 
The trajectories of the disc particles are assumed ad hoc to be ellipses, 
sharing a common longitude of periastron. More precisely, the dynamical 
equation, with which we shall deal, describes and governs the structure of 
the disc in the model developed by Lyubarskij et al. [7], and which 
generalizes the standard α-disc model of Shakura & Sunyaev [8]. These two 
papers do not involve in their considerations strongly magnetized accretion 
flows. Taking into account such a circumstance, it is a matter of interest to 
mention the recent study of Murphy et al. [9], devoted to the large-scale 
magnetic fields in the viscous resistive accretion discs. According to the 
theory of the winds from cold steady-state discs, having near Keplerian 
velocity field, there is a necessity for a large-scale magnetic field at near 
equipartition strength to present. However, as mentioned in [9], this required 
minimum magnetization (for these disc models) has never been tested with 
time dependent simulations. In order to eliminate this omission, Murphy et 
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al. [9] investigate the time evolution of a Shakura-Sunyaev accretion disc 
[8], threaded by a weak magnetic field. Its strength is such that the disc 
magnetization falls off rapidly with the radius. The results lead to the 
conclusion that the large-scale magnetic field introduces only a small 
perturbation to the disc structure and the accretion remains driven by the 
dominant viscous torque. However, their numerical simulations reveal that a 
superfast magnetosonic jet is observed to be launched from the innermost 
regions of the disc and continues to be a stationary event for a long time. 
The main conclusions, following from these numerical simulations, are that 
the astrophysical discs with superheated surface layers could drive 
analogous outflows, even if their midplane magnetization is low. In order 
the accretion process to proceed, the turbulent viscosity must extract a 
sufficient angular momentum. The authors of the investigation [9] conclude 
that the magnetized outflows are no more than byproduct, rather than a 
fundamental driver of the accretion. Nevertheless, if the midplane 
magnetization increases towards the center of the accretion disc, a natural 
transition to an inner jet-dominated disc could eventually be achieved. We 
shall pick out a little more attention to the important process of the angular 
momentum transfer in the accretion flows. 
 

2. Mechanisms of angular momentum transport 
 

It is believed that the microphysical viscosity is too small to produce 
the observed protoplanetary accretion disc lifetimes. Instead of that, it is 
suggested a new approach, based on the turbulent transport. In the later case, 
the turbulent motion takes the place of thermal motion. Though the source 
of such turbulence remains a matter of discussion, this process can provide 
the correct order of magnitude of the observed accretion rates in these 
objects for reasonable surface densities [10]. It may happen that the main 
accretion mechanism is not the turbulent viscosity, as can be seen in the 
situation with the magnetorotational instability. According to the numerical 
simulations performed in [10], the requirement for energy conservation is a 
significant constraint on the accretion driving processes, such as the 
magnetorotational instability. The mechanism of angular momentum 
transport in accretion discs is debated for a long time. In this stream of 
investigations, it should be noted that although the magnetorotational 
instability appears to be a promising explanation of the accretion events, in 
the poorly ionized regions of accretion discs there may not be favorable 
conditions for this instability to operate. In the research [11] is revisited the 
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possibility of transporting angular momentum by thermal convection. There 
is shown that strongly turbulent convection can drive outward angular 
momentum transport at a rate that is (under certain conditions) compatible 
with the observed rate in the discs. The results of Lesur & Ogilvie [11] are 
indicative that convection might be another way to explain global disc 
evolution. Such a scenario will be realistic provided that a sufficiently 
unstable vertical temperature profile can be maintained.  

Another recent research, devoted to the role of magnetic field in the 
angular momentum transport, is performed in the paper [12]. The physical 
situation (advection-dominated accretion flow with a toroidal magnetic 
field) and the geometric configuration (quasi-spherical accretion flow) are 
much different in comparison with the standard disc model of Shakura & 
Sunyaev [8], and also from the model Lyubarskij et al. [7]. Nevertheless, it 
is worthy to note, that the conclusions in [12] may have, to some extent, a 
reference to the former two models. In the research of Khesali & Faghei 
[12] it is assumed that (like in [7] and [8]), the angular momentum transport 
is due to the viscous turbulence and the α-prescription is used for the 
kinematic coefficient of viscosity. In this paper [12], a self-similar solution 
is used, in order to solve the equations that govern the dynamical behaviour 
of the accretion flow. According to the conclusions of Khesali & Faghei 
[12], their solution provides some insights into the dynamics of quasi-
spherical accretion flows and avoids many of the strictures of steady self-
similar solutions. The results in [12] show that the behaviour of the physical 
quantities in a dynamical advection-dominated accretion flow is different 
from that for a steady accretion flow or a disc using a polytropic approach. 
This model also implies that the flow has a differential rotation that is a sub-
Keplerian at small radii and super-Keplerian at large radii. Such different 
results are also obtained if a polytropic accretion flow is used. Also, the 
behaviour of the advection-dominated flows in the presence of a large 
toroidal magnetic field implies that different results are obtained using 
steady-state self-similar models in contrast to the dynamical case. The 
above remarks have to be referred/related (in some conditional and 
restricted sense) to the steady-state case of the model of Lyubarskij et al. 
[7], which dynamical equation we are going to simplify further in the 
present paper. The same note is also significant in view of the fact that the 
classical models [7] and [8] do not involve considerations of large-scale 
magnetic fields. Restricting our attention only to the particular case of 
steady-state elliptical accretion discs with orbits sharing a common 



 39 

longitude of periastron, we shall preliminary eliminate from our treatment 
the more unusual so called “mini-discs”. It is believed that they arise due to 
the accretion on to black holes in wind-fed binaries and collapsars. 
Formation of such small rotating discs is combined with some peculiar 
properties. They accrete on the free-fall time-scale, without the help of the 
viscosity, and, nevertheless, they can have a high radiative efficiency [13]. 
We shall not, of course, apply our results to these inviscid “mini-discs”. In 
principle, in the nature may exist even more “exotic” accretion discs. As 
pointed out by Zhang et al. [14], the temperature of the hot accretion flows 
around black holes is sufficiently high for the ignition of nuclear reactions. 
In the usual studies of the hot accretion flows, the viscous dissipation is 
considered as the only heating mechanism. In the same time, the heating 
caused by nuclear reactions is not considered at all. The calculations of 
Zhang et al. [14] indicate that the energy generation rate of nuclear reactions 
is at most one per cent of the viscous heating. Consequently, they are rather 
not important and the dynamics of the accretion flow can be calculated in 
the usual way, without the need to consider the heating due to the nuclear 
reactions. 
 

3. Definitions and notations 
 

With a view to be more explicit in our further exposition, we shall 
rewrite briefly some of the definitions and notations introduced and used in 
our earlier papers, dealing with the same problem. For more detailed 
descriptions and comments on this theme, the reader is directed to the paper 
([15], section 2) and the references therein. We introduce the independent 
variable u ≡ ln p, where p is the focal parameter of the ellipse, 
approximating the orbit of the considered disc particle. The eccentricity of 
the ellipse is denoted by e ≡ e(u), understanding that the orbits of the 
particles, belonging to different regions of the accretion disc, may, generally 
speaking, have different shapes/elongations. Further we use the notation ė ≡ 
ė(u) ≡ de(u)/du ≡ de/d(ln p) for the ordinary derivative of the eccentricity 
e(u). We shall consider the viscosity law η = β Σ n, with η – viscosity 
parameter, β is a constant, Σ is the surface density of the accretion disc. The 
power n is assumed to be a constant for every examined case. In paper [15] 
are established several linear relations between the following integrals, 
obtained after the averaging over the azimuthal angle φ: 
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                                                         2 π       

(1)        I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                         0                 

                                                          2 π         

(2)        I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,   
                                                          0        

   
                                                   2 π          

(3)        Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0,  
                                                       0      

             1, 2, 3, 4.   

In the earlier paper [15], we have shown how the integrals I4(e,ė,n), 
I2(e,ė,n) and I1(e,ė,n) can be expressed through linear relations of the 
integrals I0(e,ė,n), I0-(e,ė,n), and I0+(e,ė,n). Our present aim is to extend this 
approach, finding a linear relation between the last three integrals, namely, 
to determine how I0(e,ė,n) may be written out as a linear combination of I0-

(e,ė,n) and I0+(e,ė,n).  
 

4. Elimination of the integral I0(e,ė,n) 
 

We have already obtained the following relation between the 
integrals I2(e,ė,n), I0(e,ė,n) and I1(e,ė,n) ([15], formula (57)): 
(4)        [e + (n – 1)ė]I2(e,ė,n) = (– e + nė)I0(e,ė,n) – [1 + e(e – ė)]I1(e,ė,n) .   

To resolve the present problem, we begin with an another derivation 
of the integral I2(e,ė,n). As before, we suppose that ne(u)[e(u) – ė(u)] ≠ 0 for 
the considered value of u ≡ ln p. The particular cases, when this condition is 
violated, will be considered separately. According to definition (3):  
                                  2 π                        

(5)        I2(e,ė,n) = ∫cos2φ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                                                     0          

                            2 π       
              = ∫(1 – sin2φ)(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ =  
                             0                          

                             2 π           
              = ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ  +   
                              0                  

                                                     2 π                
             + (e – ė) – 1∫sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) d[1 + (e – ė)cosφ] =   
                                                      0               
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                                                                          2 π              

     = I0(e,ė,n) – [n(e – ė)] – 1∫sinφ(1 + ecosφ) n – 2d{[1 + (e – ė)cosφ] – n } = I0(e,ė,n) –  
                                                                           0            

                                                                                                                                                                     │2 π            
     – [n(e – ė)] – 1{ sinφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – n│   –        
                                                                                                                                                               │0              
               2 π 

     –  ∫cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – ndφ +   
                0            

                                     2 π  

     + (n – 2)e ∫ sin2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – n dφ } =  I0(e,ė,n) + 
                                      0                
                                                2 π          

     + [n(e – ė)] – 1 ∫[1 + (e – ė)cosφ] cosφ(1 + ecosφ) n – 2[1 + (e – ė)cosφ] –  (n + 1)dφ  –   
                                                0             
                                                                    2 π           
      – (n – 2)e[n(e – ė)] – 1∫[1 + (e – ė)cosφ](1 – cos2φ)( 1 + ecosφ) n – 3 ×  
                                                                    0 

      × [1 + (e – ė)cosφ] –  (n + 1)dφ  = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n)  –  
                                                                     2 π              
      – (n – 2)e[n(e – ė)] – 1∫(1 – cos2φ)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  –   
                                                                     0              
                                                2 π            
      – (n – 2)en – 1 ∫(1 – cos2φ)cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                                 0                
      = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n)  –  
                                                                    2 π          
      – (n – 2)e[n(e – ė)] – 1∫ (1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  + 
                                                                     0                            
                                                                    2 π               
      + (n – 2)e[n(e – ė)] – 1∫cos2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  – 
                                                                      0                            
                                              2 π               
      – (n – 2)en – 1∫cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  +  
                                               0                    
                                     2 π               
      + (n – 2)en – 1∫cos3φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =   
                                                0                    
      = I0(e,ė,n) + [n(e – ė)] – 1I1(e,ė,n) + n – 1I2(e,ė,n) – (n – 2)e[n(e – ė)] – 1I0-(e,ė,n) +  
      + (n – 2)e[n(e – ė)] – 1[e – 1I1(e,ė,n) – e – 2 I0(e,ė,n) + e – 2 I0-(e,ė,n)]  – 
       –  (n – 2)en – 1[e – 1I0(e,ė,n) – e – 1I0-(e,ė,n)] + 
       + (n – 2)en – 1[e – 1I2(e,ė,n) – e – 2 I1(e,ė,n) + e – 3 I0(e,ė,n) – e – 3 I0-(e,ė,n)] .  
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Computing of the last three integrals in the right-hand-side of the 
above equation is expressed in the next three equalities:  
                       2 π               

(6)        ∫cosφ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0 
                                     2 π               

           = e – 1∫(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                     0               
           = e – 1I0(e,ė,n) – e – 1I0-(e,ė,n) ,  
                       2 π               

 (7)       ∫cos2φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0                             
                                   2 π               
           = e – 1∫cosφ(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                   0                          
           = e – 1I1(e,ė,n) – e – 2 I0(e,ė,n) + e – 2 I0-(e,ė,n) ,  

 

 

                       2 π               

 (8)       ∫cos3φ(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                       0                                      
                                   2 π               
           = e – 1∫cos2φ(1 + ecosφ – 1)(1 + ecosφ) n – 3[1 + (e – ė)cosφ] –  (n + 1)dφ  =  
                                    0                          
           = e – 1I2(e,ė,n) – e – 2 I1(e,ė,n) + e – 2 I0(e,ė,n) – e – 3 I0-(e,ė,n) .   
        

After some algebra, the expression (5) gives the following result for 
the integral I2(e,ė,n):   
(9)        n – 1 I2(e,ė,n) = (n – 2)ė(1 – e2)[ne2(e – ė)] – 1I0-(e,ė,n) + 
           + n – 1{ 2 – (n – 2)ė[e2(e – ė)] – 1 } I0(e,ė,n) + 
           + n – 1{ (e – ė) – 1 + (n – 2)ė[e(e – ė)] – 1 } I1(e,ė,n) .    
       Multiplying this equality by ne2(e – ė), we shall obtain:  
(10)     e2(e – ė)I2(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n) + [2e2(e – ė) – (n – 2)ė]        

I0(e,ė,n) + [e2 + (n – 2)eė] I1(e,ė,n) .   
       This is another linear relation, which enables us (like the equality (4)) to 
eliminate the integral I2(e,ė,n). We shall now check the validity of (10) in 
the cases when the power n, the eccentricity e(u) and its derivative ė(u) may 
vanish separately or simultaneously for some value u ≡ ln p – a situation 
that was preliminary excluded in deriving of (10). 
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4.1. Case n ≠ 0, e(u) = 0, e(u) – ė(u) = 0 => e(u) = ė(u) = 0. 
      

The relation (10) can be written as the equality 0 = 0, i.e., it is right.  
 

4.2. Case n ≠ 0, e(u) = 0, e(u) – ė(u) ≠ 0 => ė(u) ≠ 0. 
 

The equality (10) becomes:  
(11)       0 = (n – 2)ėI0-(0,ė,n) – (n – 2)ėI0(0,ė,n) .  

If n = 2, (11) is trivially fulfilled. If n ≠ 2, after the division of both 
sides by (n – 2)ė, we must prove that I0-(0,ė,n) = I1(0,ė,n). This was already 
done earlier: see equalities (81) and (82) from paper [15]. 
 

4.3. Case n ≠ 0, e(u) ≠ 0, e(u) – ė(u) = 0 => ė(u) = e(u) ≠ 0. 
     

We can write (10) in the following way:   
(12)       0 = (n – 2)(1 – e2)ėI0-(e,ė = e,n) – (n – 2)ėI0(e,ė = e,n) + (n – 1)eėI1(e,ė = e,n) .  
       Dividing by ė ≠ 0, we arrive at the next formula, which we must to 
prove, in order to verify (10) in this particular case: 
(13)       (n – 1)e I1(e,ė = e,n) = (n – 2)I0(e,ė = e,n) – (n – 2)(1 – e2)I0-(e,ė = e,n) .  
       We directly compute that: 
                                                                2 π                                                                     2 π 

(14)       I1(e,ė = e,n) = ∫cosφ(1 + e cosφ) n – 2 dφ =  ∫(1 + e cosφ) n – 2 d(sinφ) =  
                                                                 0                                                                        0             
                                                                                  │2 π                          2 π              
            = sinφ(1 + e cosφ) n – 2│  + (n – 2)e ∫sin2φ(1 + e cosφ) n – 3 dφ =    
                                                                                   │0                              0                                
                                                  2 π                                                                                                              2 π                        
            = (n – 2)e ∫(1 – cos 2φ)(1 + e cosφ) n – 3 dφ =  (n – 2)e ∫(1 + e cosφ) n – 3 dφ  –   
                                                   0                                                                                                                  0            
 

                                                2 π                             
            –  (n – 2) ∫cosφ(1 + ecosφ – 1)(1 + e cosφ) n – 3 dφ = (n – 2)eI0-(e,ė = e,n) –  
                                                 0                  
                                             2 π                                                                                     2 π                         
           – (n – 2) ∫cosφ(1 + e cosφ) n – 2 dφ + (n –2) ∫cosφ(1 + e cosφ) n – 3 dφ =  
                                             0                                                                                         0                   

           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) +   
                                                        2 π 

           + (n – 2)e – 1 ∫(1 + ecosφ – 1)(1 + e cosφ) n – 3 dφ =  
                                                          0                    
           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) +   
                                                           

 



 44 

                                                      2 π                                                                                   2 π                        
           + (n – 2)e – 1 ∫(1 + e cosφ) n – 2 dφ – (n – 2)e – 1 ∫(1 + e cosφ) n – 3 dφ =    
                                                       0                                                                                      0           
           = (n – 2)eI0-(e,ė = e,n) – (n – 2)I1(e,ė = e,n) + (n – 2)e – 1I0(e,ė = e,n) –   
           –  (n – 2)e – 1I0-(e,ė = e,n) .  
       Multiplying  the both sides by e(u) ≠ 0, we obtain the equality (13), and, 
correspondingly, the linear relation (10) is proved.  
 

4.4. Case n = 0, e(u) = 0, e(u) – ė(u) = 0 => e(u) = ė(u) = 0. 
     

The equality (10) may be written as 0 = 0, and it is obviously 
fulfilled.  
 

4.5. Case n = 0, e(u) = 0, e(u) – ė(u) ≠ 0 => ė(u) ≠ 0. 
 

Now (10) becomes: 
(15)       0 = – 2ėI0-(0,ė ,0) + 2ė I0(0,ė ,0) ,  or I0-(0,ė ,0) = I0(0,ė ,0) .  
                                                                                                             2 π                

       This is true, because I0(0,ė ,0) = ∫(1 – ėcosφ) – 1dφ = I0-(0,ė ,0) .  
                                                                                                             0             

 
4.6. Case n = 0, e(u) ≠ 0, e(u) – ė(u) = 0 => ė(u) = e(u) ≠ 0.  
     

The linear relation(10), which must be proved, in this case becomes:  
(16)       0 = – 2(1 – e2)ėI0-(e,ė = e,0) + 2ėI0(e,ė = e,0) – e2I1(e,ė = e,0) .   

We have already computed (formula (70) from [15], multiplied by – 
e2(u) ≠ 0), that in this case we have: 

  

(17)       – e2I1(e,ė = e,0) = e3I0(e,ė = e,0) . 
Taking into account that e(u) = ė(u), we also compute (substituting 

(17) into (16)):  
 

(18)       – 2(1 – e2)eI0-(e,ė = e,0) + 2eI0(e,ė = e,0) + e3I0(e,ė = e,0) =  
             =  – 2(1 – e2)eI0-(e,ė = e,0) + e(2 + e2)I0(e,ė = e,0) .  

For later purposes, we evaluate in an explicit form the integral  
I0(e,ė = e,0), using the formula 858.538 from Dwight [16]: 
                                                                    2 π         

(19)       I0(e,ė = e,0) = ∫(1 + ecosφ) – 2 dφ = 2π[(1 – e2)(1 – e2) 1/ 2] – 1 .   
                                                                    0           

       In the considered case, because ė(u) = e(u), the integral I0(e,ė = e,0) is a 
function only on one independent variable, namely e. We shall differentiate 
this integral with respect to e. Having in mind, that differentiation and 
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integration are linear operations, which sequence of carrying out may be 
interchanged, we write:  
(20)       d I0(e,ė = e,0)/de =(d/de)[2π(1 – e2) – 3/ 2] = 3e(1 – e2) – 12π(1 – e2) – 3/ 2 =  
             = 3e(1 – e2) – 1I0(e,ė = e,0) , 
where we have applied the result (19). From the other hand:  
                                                                                              2 π                                                           2 π 

(21)       d I0(e,ė = e,0)/de = (d/de)∫(1 + ecosφ) – 2 dφ = – 2 ∫cosφ(1 + ecosφ) – 3 dφ =   
                                                                                               0                                                              0           

                                 2 π                                                                                                                2 π 

           = – 2e – 1 ∫(1 + ecosφ – 1)(1 + ecosφ) – 3 dφ =  – 2e – 1 ∫(1 + ecosφ) – 2 dφ +  
                                           0                                                                                                                   0 

                              2 π  
           + 2e – 1 ∫(1 + ecosφ) – 3 dφ = – 2e – 1I0(e,ė = e,0) + 2e – 1I0-(e,ė = e,0) .  
                                      0           

       Combining (20) and (21) gives:    
(22)       – 2e – 1I0(e,ė = e,0) + 2e – 1I0-(e,ė = e,0) = 3(1 – e2) – 1I0(e,ė = e,0) .   
       Multiplication by e(1 – e2) leads to: 
(23)       [– 2(1 – e2) – 3e2]I0(e,ė = e,0) = – 2(1 – e2)I0-(e,ė = e,0) .  
       Another multiplication of the above equality by e(u) ≠ 0 gives that: 
(24)       (2 + e2)eI0(e,ė = e,0) – 2e(1 – e2)I0(e,ė = e,0) = 0 , 
       that means (taking into account the results(17) and (18)) that (16) is 
true, and, consequently, the relation (10) is again proved. 
 

4.7. Case n = 0, e(u) ≠ 0, e(u) – ė(u) ≠ 0.  
     

The linear relation (10) takes the form:  
(25)       e2(e – ė)I2(e,ė,0) = – 2(1 – e2)ėI0-(e,ė,0) + [2e2(e – ė) + 2ė]I0(e,ė,0) +   
             + (e2 – 2eė)I1(e,ė,0) .    

We again shall use the explicit analytical expressions for n = 0, 
derived for the integrals I0-(e,ė,0), I0(e,ė,0), I1(e,ė,0) and I2(e,ė,0) ([17], 
formulas 3a), 3b), 3c) and 3h); see also formulas (48), (49) and (50)in the 
paper [15]). According to the formula 3h) in [17], we are able to write for I0-

(e,ė,0) the following expression:  
(26)       I0-(e,ė,0) = A(e,ė)[2(1 – e2)ė] – 1{ (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 –   
             – 5e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 – 2(e – ė)3(1 – e2) 5/ 2 } , 
where we have used the notation (47) from paper [15] for A(e,ė): 
(27)       A(e,ė) = 2πė – 2(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2 .    
       Taking into account the expression [50] from the same paper [15]: 
(28)       I2(e,ė,0) = A(e,ė){ (– 1 + e2 + eė)[1 – (e – ė)2]1/ 2 + (1 – e2) 3/ 2 },   
we compute the left-hand-side of the relation (25), which we intent to prove:   



 46 

(29)     e2(e – ė)I2(e,ė,0) = e2(e – ė)A(e,ė){(– 1 + e2 + eė)[1 – (e – ė)2] 1/ 2 + (1 – e2) 3/ 2} = 
           = A(e,ė){ (– e3 + e5 + e2ė – e3ė2)[1 + (e – ė)2] 1/ 2] + e2(e – ė)(1 – e2) 3/ 2 } .  
       Now we begin to evaluate the right-hand-side of (25). That is: 
(30)    – 2(1 – e2)ėI0-(e,ė,0) + [2e2(e – ė) + 2ė]I0(e,ė,0) + (e2 – 2eė)I1(e,ė,0) =  
           = A(e,ė){ (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2) × 

           × [1 – (e – ė)2] 1/ 2 – 2(e – ė)3(1 – e2) 5/ 2 } +  
            + A(e, ė)[2e2(e – ė) + 2ė]{ eė[1 – (e – ė)2] 1/ 2 – e(e – ė)(1 – e2)[1 – (e – ė)2] 1/ 2 +  
           + (e – ė)2(1 – e2) 3/ 2 } +  
           + A(e,ė)(e2 – 2eė){ (e – ė – e3)[1 – (e – ė)2] 1/ 2 – (e – ė)(1 – e2) 3/ 2 } =   
           = A(e,ė){ (– 2e3 + 4e5 – 2e7 + 6e2ė – 10e4ė + 4e6ė – 6eė2 + 5e3ė2 – 2e5ė2) ×   
         × [1 – (e – ė)2] 1/ 2 + (2e3 – 2e5 – 6e2ė + 6e4ė + 6eė2 – 6e3ė2 – 2ė3 + 2e2ė3)(1 – e2) 3/ 2 + 
           +  (2e4ė + 2eė2 – 2e3ė2)[1 – (e – ė)2] 1/ 2 + 
           + (2e7 – 2e5 – 2e2ė + 6e4ė – 4e6ė + 2eė2 – 4e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 + 
            + (2e5 + 2e2ė – 6e4ė – 4eė2 + 6e3ė2 + 2ė3 – 2e2ė3)(1 – e2) 3/ 2 + 
             + (e3 – e5 – 3e2ė + 2eė2 +2e4ė)[1 – (e – ė)2] 1/ 2 + (– e3 + 3e2ė – 2eė2)(1 – e2) 3/ 2 } =  
           = A(e,ė){ (– e3 + e5 – e3ė2 + e2ė)[1 – (e – ė)2] 1/ 2 + (e3 – e2ė)(1 – e2) 3/ 2 } .   
        

This coincides with the right-hand-side of (29). Consequently, the 
relations (25) and (10) are proved also for the case n = 0,  e(u) ≠ 0 and e(u) – 
ė(u) ≠ 0. 

To summarize the situation, we note that we have two linear 
relations between the integrals I2(e,ė,n), I1(e,ė,n), I0(e,ė,n) and I0-(e,ė,n), 
namely, the equalities (4) and (10). They are both valid for arbitrary 
integer/noninteger powers n (we consider physically reasonable values of n 
between – 1 and + 3), arbitrary values of the eccentricity e(u) (provided that 
|e(u)| < 1) and its derivative ė(u) (provided that |e(u) – ė(u)| < 1). To proceed 
further, we shall multiply (4) by e2(e – ė) and also multiply (10) by [e + (n – 
1)ė].  The result is the following:   
(31)       e2(e – ė)[e + (n – 1)ė]I2(e,ė,n) ≡ e2(e – ė)(– e + nė)I0(e,ė,n) –  
               – e2(e – ė)[1 + e(e – ė)]I1(e,ė,n) = [e + (n – 1)ė](n – 2)(1 – e2)ėI0-(e,ė,n) +  
               + [e + (n – 1)ė][2e2(e – ė) – (n – 2)ė]I0(e,ė,n) +  
               + [e + (n – 1)ė][e2 + (n – 2)eė]I1(e,ė,n) .  

The second equality in the above expression gives, in one’s turn, a 
new linear relation between the integrals I1(e,ė,n), I0(e,ė,n) and I0-(e,ė,n):   
(32)       e[– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2]I1(e,ė,n) =   
               = (n – 2)[eė – e3ė +(n – 1)ė2 – (n – 1)e2ė2]I0-(e,ė,n) +  
               + [3e4 – (n – 2)eė + (n – 5)e3ė – (n – 1)(n – 2)ė2 – (n – 2)e2ė2]I0(e,ė,n) .   
       The derivation of the above result (32) supposes that the both 
multipliers e(e – ė) ≠ 0 and [e + (n – 1)ė] ≠ 0. As already investigated above, 
the vanishing of these two multipliers does not invalidate the relations (4) 
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and (10). Their left-hand-sides will be simply equal to zero. We stress, that 
our purpose in this section 4 is to eliminate the integral I0(e,ė,n) by means of 
the establishment of linear relations between I0(e,ė,n), I0-(e,ė,n) and 
I0+(e,ė,n). Just from this point of view, we shall consider the particular cases 
e(e – ė) = 0 and [e + (n – 1)ė] = 0. Firstly, we shall resolve the problem 
namely for these two particular cases and, after that, we shall return to the 
equality (32).  
 
       4.8.1. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] = 0, ė(u) ≠ 0.  
             

The relations (4) and (10) take the forms (having in mind that  
– e = (n – 1)ė ):  
(33)       0 = (2n – 1)ėI0(e,ė,n) – I1(e,ė,n) ,  or    I1(e,ė,n) = (2n – 1)ėI0(e,ė,n),  
(34)       0 = (n – 2)(1 – e2)ėI0-(e,ė,n) – (n – 2)ėI0(e,ė,n) + [e2 + (n – 2)eė]I1(e,ė,n).  
       Combining the above results (33) and (34), we obtain:   
(35)       [(n – 2)ė – (2n – 1)e2ė – (2n – 1)(n – 2)eė2]I0(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n).  
       As already mentioned above, – e = (n – 1)ė for this particular case, and 
we are able to  write (35) as: 
(36)       ė[(n – 2) – (n – 1)(2n – 1)ė2]I0(e,ė,n) = (n – 2)(1 – e2)ėI0-(e,ė,n).  
       If ė(u) = 0, this equality cannot be used for determination of I0(e,ė,n). 
But if ė(u) ≠ 0, (which is the situation in our case !), we have: 
(37)       [(n – 2) – (n – 1)(2n – 1)ė2]I0(e,ė,n) = (n – 2)(1 – e2)I0-(e,ė,n) .  
       Of course, (37) may be useful only if the multiplier [(n – 2) – (n – 1)(2n 
– 1)ė2] ≠ 0. 
       It is worthy to note, that in the present case, which we consider, the left-
hand-side of the relation (79) from paper [15]: 
(38)       2e(e – ė)I1(e,ė,n) = (n – 2)(e – ė)( 1 – e2)I0-(e,ė,n) +  
              + (n + 1)e[(e – ė)2 – 1]I0+(e,ė,n) + [3e + (n – 2)ė]I0(e,ė,n)   
is also equal to zero. This provides another possibility to exclude the 
integral I0(e,ė,n). That is: 
(39)       [3e + (n – 2)ė]I0(e,ė,n) = – (n – 2)(e – ė)(1 – e2)I0-(e,ė,n) +  
             + (n + 1)e[1 – (e – ė)2] I0+(e,ė,n) .  
       Taking about the present particular case, the equality e(u) = – (n – 
1)ė(u) we express (39) in the form:  
(40)       (2n – 1)ėI0(e,ė,n) = – (n – 2)nė(1 – e2)I0-(e,ė,n) +  
             + (n – 1)(n + 1)ė(1 – n2ė2) I0+(e,ė,n) .  
       If ė(u) = 0, this equality cannot be useful for the determination of 
I0(e,ė,n). But if ė(u) ≠ 0, we have: 
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(41)       (2n – 1)I0(e,ė,n) = – n(n – 2)(1 – e2)I0-(e,ė,n) + (n – 1)(n + 1)(1 – n2ė2) I0+(e,ė,n) .  
 

If (2n – 1) = 0 (i.e., n = 1/2), we are not able to eliminate the integral 
I0(e,ė,n), using the above relation (41). But nevertheless, [(n – 2) – (n – 1) 
(2n – 1)ė2] = n – 2 = – 3/2 ≠ 0, and we may then use (37) to eliminate 
I0(e,ė,n). Consequently, if ė(u) ≠ 0, the linear relations (37) and (41) ensure 
the elimination of I0(e,ė,n) in the case 4.8.1, which particular case implies 
e(u) = – (n – 1)ė(u). We strongly emphasize, that the later equality must not 
be considered, in general, as a first order ordinary differential equation for 
the eccentricity e(u), whose solution is e(u) = constant × exp[ – (n – 1) – 1u]. 
Though such a situation may be (in principle) a subject of special 
investigation. In the present paper, we limit our computations only to 
concrete values u ≡ ln p of the focal parameter p, which are able to cause 
troubles (e.g. singularities) in the derived by us linear relations between the 
seven integrals I0-(e,ė,n), I0+(e,ė,n) and Ij(e,ė,n), (j = 0,1,…,4) (see formulas 
(1), (2) and (3) ). We do not expect that these divergences do scope the 
whole range of the accretion disc. Such a pathological situation would imply 
that the accretion disc model itself is very wrong. So, we consider the 
possible “singular values” of the independent variable u ≡ ln p as isolated 
points or “small” (in some sense) intervals, which do not determine the 
global structure of the accretion flow. 
 

4.8.2. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] = 0, ė(u) = 0. 
 

To conclude the considerations in the paragraph 4.8, we return to the 
case ė(u) = 0. By the hypotheses of this paragraph, ė(u) = 0 implies also that 
e(u) = 0. But the situation is now very trivial, simply because 
                                                       2 π       

I0(0,0,n) = ∫dφ = 2π. There does not arise the necessity to represent 
                                                        0                    

the integral I0(0,0,n) by means of a linear combination of the integrals  
I0-(0,0,n) and I0+(0,0,n). It is worthy to note, that in the limits e(u) → 0 and 
ė(u) → 0, the relations (37) and (41) (depending on the condition  n = 1/2 or  
n ≠ 1/2, correspondingly) give the same value 2π for I0(0,0,n), although they 
are derived under the assumption ė(u) ≠ 0. That is an indication for a 
continuous transition of the values of I0(0,0,n) through the “singular” value 
ė(u) = 0. We shall not handle here in a strict mathematical manner this 
circumstance. Out goal is to prove that the integral I0(0,0,n) is possible to be 
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removed from the dynamical equation ([15], equation (4)) of the accretion 
disc.  
 

4.8. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0.  
     

We shall prove now that under the above conditions ė(u) cannot be 
equal to zero. If we suppose the opposite, namely that ė(u) = 0, then from 
the second condition [e(u) + (n – 1)ė(u)] ≠ 0 it follows that e(u) ≠ 0. But 
from the first equality we have e(u) – ė(u) = 0, or e(u) = 0. We obtain a 
contradiction. Hence, ė(u) ≠ 0. We shall consider the following subclasses:  
 

4.9.1. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0, e(u) = 0. 
 

From [e(u) + (n – 1)ė(u)] ≠ 0 it follows (n – 1)ė(u) ≠ 0. We already 
just proved that ė(u) ≠ 0. Consequently, n ≠ 1, otherwise this case 4.9.1 will 
be inconsistent. The relation (10) reduces to (11) and if n ≠ 2, after dividing 
the both sides of (11) by (n – 2)ė, the result is I0(0,ė,n ≠ 1, 2) = I0-(0,ė,n ≠ 1, 
2). In the case n = 2, we have  
                               2 π           

I0(0,ė,2) = ∫(1 – ėcosφ) – 3 dφ = I0-(0,ė,2). Therefore, for all admissible n  
                                 0         

(i.e., n ≠ 1) we again obtain the equality  

(42)       I0(0,ė,n ≠ 1) = I0-(0,ė,n ≠ 1) .   
 

4.9.2. Case e(u)[e(u) – ė(u)] = 0, [e(u) + (n – 1)ė(u)] ≠ 0, e(u) ≠ 0.  
 

If e(u) ≠ 0, it follows that e(u) = ė(u) ≠ 0. The second condition 
implies that nė(u) ≠ 0. Consequently, we must reject the value n = 0, 
otherwise the case 4.9.2 will be inconsistent. Direct computation shows 
that:  
                                                                                2 π          

(43)       I0(e,ė = e,n ≠ 0) = ∫(1 + ecosφ) n – 2 dφ = I0+(e,ė = e,n ≠ 0) ,  
                                                                                0             

according to the definitions (2) and (3). Of course, the equality  
I0(e,ė = e,n) = I0+(e,ė = e,n) is also true for n = 0, out of the considered 
present case.  

The above analysis again demonstrates the possibility to express the 
integral I0(e,ė,n) in terms of the integrals I0-(e,ė,n) and I0+(e,ė,n), without to 
put in use the earlier eliminated integrals Ij(e,ė,n) (j = 1,2,3,4).  
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4.9. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0.  
 

The above conditions impose two restrictions over the power n in the 
viscosity law   η = β Σ n. From the second equality [e(u) + (n – 1)ė(u)] = 0 it 
follows that:  
(44)       e(u) – ė(u) = – nė(u) .  

If n = 0, this will vanish the difference e(u) – ė(u), in contradiction to 
the hypothesis that e(u)[e(u) – ė(u)] ≠ 0. Moreover, if n = 1, the second 
equality also will imply that e(u) = 0, again in contradiction to the first 
requirement. The equality (44) also imposes the requirement ė(u) ≠ 0, to 
avoid vanishing of the difference e(u) – ė(u). Therefore, to avoid 
inconsistency of the case 4.10, we must preliminary exclude the 
possibilities that some of the equalities n = 0, n = 1 and ė(u) = 0 (or 
combinations of them) are appearing. In our consideration, two different 
subclasses must be investigated separately. 
 

4.10.1. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0, n ≠ 1/2. 
 

To establish a linear dependence between integrals I0-(e,ė,n), 
I0+(e,ė,n) and  I0(e,ė,n), we shall use the relations (4) and (38), which we 
have already proved to be valid for arbitrary integer/noninteger powers  
n (– 1 ≤ n ≤ + 3), e(u) (|e(u)| < 1) and ė(u) (|e(u) – ė(u)| < 1). In the present 
case [e(u) + (n – 1)ė(u)] = 0, i.e., the left-hand-side of (4) is equal to zero. 
Multiplying (4) by 2e(u)[e(u) – ė(u)] ≠ 0, we obtain:   
(45)      2e(e – ė)(– e + nė)I0(e,ė,n) – [1 + e(e – ė)]2e(e – ė)I1(e,ė,n) =   
             = 2e(e – ė)(– e + nė)I0(e,ė,n) – [1 + e(e – ė)](n – 2)(e – ė)(1 – e2)I0-(e,ė,n) –    
             – [1 + e(e – ė)](n + 1)e[(e – ė)2 – 1]I0+(e,ė,n) –    
             – [1 + e(e – ė)][3e + (n – 2)ė]I0(e,ė,n) = 0,  
where we have applied the equality (38). After some algebra, the second 
equality may be transformed to the next form, representing the linear 
dependence between I0(e,ė,n), I0-(e,ė,n) and I0+(e,ė,n), which we are 
searching for:   
(46)       [3e + 5e3 + (n – 2)ė – (n + 7)e2ė + (n + 2)eė2]I0(e,ė,n) =   
              = (n – 2)( – e + e5  + ė + e2ė – 2e4ė – eė2 + e3ė2)I0-(e,ė,n) +   
              + (n + 1)(e – e5 + e2ė + 3e4ė – eė2 – 3e3ė2 + e2ė3)I0+(e,ė,n) .   
       It is useful to rewrite the relation (45) into another (equivalent to 
(46))form, which will allow us to reveal more clearly the conditions, making 
possible to eliminate I0(e,ė,n) using (45). For this purpose, we employ that 
under the hypothesis, valid for the considered case 4.10, [e(u) + (n – 1)ė(u)] = 0. 
Consequently, we can rewrite (44) in an equivalent form:   
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(47)       e(u) = – (n – 1)ė(u) ,    or    – e(u) = (n – 1)ė(u) , 
in order to eliminate e(u) from (45), obtaining for analysis a more simple 
expression. The result is:  
(48)       (2n – 1)ė[1 + 3n(n – 1)ė2]I0(e,ė,n) =  
              – n(n – 2)ė[1 + n(n – 1)ė2][1 – (n – 1)2ė2]I0-(e,ė,n) –  
              – (n2 – 1)ė[1 + n(n – 1)ė2](n2ė2 – 1)I0+(e,ė,n) .  
       Clearly, ė(u) cancels out (we have already shown at the beginning of the 
case 4.10, that ė(u) cannot be equal to zero). It is also evident that (48) 
cannot be useful if n = 1/2, because its left-hand-side is then equal to zero; 
for this reason, we supposed in the hypotheses of the subclass 4.10.1 that n 
≠ 1/2. It remains to check is it possible that the third multiplier in the left-
hand-side of (48) may happen to be zero for the given value of the argument 
u ≡ ln p, i.e.:   
(49)       1 + 3n(n – 1)ė2(u) = 0     < = >    3ė2(u)n2 – 3ė2(u)n + 1 = 0 .   

From the above equality it is obvious that n(n – 1) < 0, i.e., the 
multipliers n and (n – 1) have opposite signs (remember that n ≠ 0, 1/2 and 
+ 1). Let us consider the two alternative possibilities:  

 ( i ) n < 0 & (n – 1) > 0.   => We obtain a contradiction, because it 
is impossible to have simultaneously n < 0 and n > + 1. 

 ( ii ) n > 0 & (n – 1) < 0   => 0 < n < + 1. Taking into account that n 
≠ 1/2, we conclude that n belongs to the union of the open intervals  
(0,1/2 )U(1/2,1) if the equality (49) holds. We shall use the positivity of n in 
the deriving of the next inequalities.  

Having in mind the equalities (44) and (47) (valid for the case 4.10), 
and the restrictions |e(u)| < 1 and |e(u) – ė(u) | < 1 (valid for any value of u), 
we are able to rewrite them in the following way:   
(50)       n |ė(u)| < 1 ,  
(51)       (1 – n) |ė(u)| < 1 .  

Summation of these two inequalities immediately gives: 
(52)       |ė(u)| < 2 .  

Let us consider (49) as a quadratic equation for the power n. The 
discriminant of this equation is: 
(53)       D = 9ė4(u) – 12ė2(u) ≡ ė4(u)[9 – 12ė – 2(u)] .  

We are seeking only for real solutions of the equation (49), which 
means  that D ≥ 0. Therefore:  
(54)       ė2(u) ≥ 4/3    =>  |ė(u)| ≥ 2/√3 > 1 .  

Combining (52) and (54) leads to the limitations:  
(55)       1 < 2/√3 ≤ |ė(u)| < 2 . 
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The two solutions of the equation (49) are:   
(56)       n1,2 = (6ė2) – 1(6ė2 ± √D ) .  

Strictly speaking, the value n = +1 is already excluded and the 
discriminant D must be positive. Correspondingly, (55) has to be corrected 
as 2/√3 < |ė(u)| . Moreover, n belongs to the union (0,1/2 )U(1/2,1), and if 
we choose in (56) the sign “+”, the solution for n will be greater than +1. To 
avoid the contradiction, we must select the sign “–“. Then the solution of the 
equation (49) is:   
(57)       n = 1 – [1/4 – (3ė2) – 1] 1/ 2 .   

Obviously, n < +1, and the condition n > 0 is also satisfied, because 
ė – 2 > – 9/4 . It seems that there is a possibility to exist a relation between 
ė(u) and the power n belonging to (0,1/2 )U(1/2,1) , namely, the equality 
(57), which implies nullification of the multiplier [1 + 3n(n – 1)ė2(u)] in the 
linear relation (48). We shall now show that such a possibility, in fact, 
cannot be realized. Let us accept that the equality  (49) is realized. We 
compute the common factor [1 + n(n – 1)ė2(u)], which presents in the both 
terms in the right-hand-side of (48).  
(58)       [1 + n(n – 1)ė2(u)] ≡ [1 + 3n(n – 1)ė2(u)] – 2n(n – 1)ė2 = – 2n(n – 1)ė2 ≠ 0,  
because n ≠ 0, +1 and ė(u) ≠ 0. Then the equality (48) takes the form (under 
the condition (49) ):   
(59)       0 = – n(n – 2)[1 – (n – 1)2ė2]I0-(e,ė,n) – (n2 – 1)(n2ė2 – 1)I0+(e,ė,n),  
where a cancellation  by ė[1 + n(n – 1)ė2] ≠ 0 is performed. Expressing ė2(u) 
through the power n, using again (49), we have:  
(60)       ė2(u) = – [3n(n – 1)] – 1 , (remember that in the considered case n 
belongs to the union of the open intervals (0,1/2 )U(1/2,1) ). 

Substitution of this equality into (59) leads to: 
(61)       (n – 2)(4n – 1)I0-(e,ė,n) + (n + 1)( – 4n + 3) I0+(e,ė,n) = 0 .  

At the present stage we shall use a result, which will be proved in a 
forthcoming paper; namely, the integrals I0-(e,ė,n) and I0+(e,ė,n) are linearly 
independent functions on e(u) and ė(u). This is the reason, for which we 
prefer to eliminate the integrals I4(e,ė,n), I2(e,ė,n), I1(e,ė,n) and I0(e,ė,n)  
from the dynamical equation ([15], equation (4)) of the accretion disc, and 
to remain the integrals I0-(e,ė,n) and I0+(e,ė,n). The situation with the 
integral I3(e,ė,n) is at present unclear. The linear independence between  
I0-(e,ė,n) and I0+(e,ė,n) implies that the coefficients before these two 
integrals in the linear relation (61) are identically equal to zero:  
(62)       (n – 2)(4n – 1) = 0     =>      n = 1/4, because n ≠ 2 ,  
(63)       (n + 1)( – 4n + 3) = 0 .   



 53 

           From the later equation (63) we have two different possible solutions: 
(i) n =  – 1, or (ii) n = 3/4. Both they contradict to the solution n = 1/4, 
implied from (62). But (62) and (63) must hold simultaneously. 
Consequently, this controversial situation means that [1 + 3n(n – 1)ė2] 
cannot be equal to zero for any value u ≡ ln p and the possible relation 
between n and ė(u), admitted by the equality (57) also cannot be realized. 
As a final result, we conclude that (2n – 1)ė[1 + 3n(n – 1)ė2] ≠ 0. This closes 
the consideration of the case 4.10.1.  
 

4.10.2. Case e(u)[e(u) – ė(u)] ≠ 0, [e(u) + (n – 1)ė(u)] = 0, n = 1/2.  
 

       We directly compute from the definition (3) (for j = 0) that:   
                                                                                        2 π    

(64)       I0[e = (1/2)ė,ė,1/2] = ∫[1 – (n – 1)ėcosφ] – 3/ 2(1 – nėcosφ) – 3/ 2 dφ =   
                                                                                         0                    

                          2 π                

              = ∫[1 – (ė2/4)cos2φ] – 3/ 2 dφ > 0 ,  
                                0     

where we have used that for n = 1/2 we have e(u) = (1/2)ė(u) (formula (47)) 
and (e – ė) = – nė(u) = – (1/2)ė(u) (formula (44)).  

It is known from the analysis, that the definition of the complete 
elliptic integral of the second kind E(k2) is given by ([16], formula 771.): 
                                                                                  2 π       

(65)       E(π/2, k) ≡ E(k2) = ∫(1 – k2sin2φ) 1/ 2 dφ .  
                                                                                   0          

The condition (55) ensures that (ė2/4) < 1 and then:  
(66)       I0[e = (1/2)ė,ė,1/2] = 2[1 – (ė2/4)] – 1E(ė2/4) +  
             + 2[1 – (ė2/4)] – 1/ 2 E{– (ė2/4)[1 – (ė2/4)] – 1} →  2π .  
                                                                                                                          ė (u) → 0     

We only among the other things show the above formula, in order to 
manifest the existence of an explicit analytical expression for the integral 
I0[e = (1/2)ė,ė,1/2]. We shall not perform here the derivation of the relation 
(66). It turns out, that just this result goes to be of use. In fact, the 
hypotheses, made in the subclass 4.10.2., leads to the conclusion that the 
investigated relation (48) simply transforms to the identity 0 = 0 if n = 1/2 
and e(u) = (1/2)ė(u). Thus, in the considered case, it becomes useless for the 
determination of I0[e = (1/2)ė,ė,1/2]. To see this, let us evaluate the linear 
relation (48) (preliminary canceling out the multiplier ė(u) ≠ 0) in the case 
when n = 1/2: 
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(67)       0 = (3/4)[1 – (1/4)ė2]2 I0-(e,ė,1/2) – (3/4) )[1 – (1/4)ė2]2 I0+(e,ė,1/2) .  
The second inequality (55) |ė(u)| < 2 allows to cancel out the 

multiplier (3/4)[1 – (1/4)ė2]2 ≠ 0. Taking into account (47) for n = 1/2 (i.e., 
e(u) = (1/2)ė(u)), we rewrite (67) as: 
                                                                                       2 π          

(68)       I0-[e = (1/2)ė, ė, 1/2] = ∫[1 – (ė2/4)cos2φ] – 3/ 2[1 + (1/2)ėcosφ] – 1dφ =  
                                                                                        0      

 

                              2 π     

              = ∫[1 – (ė2/4)cos2φ] – 3/ 2[1 – (1/2)ėcosφ] – 1dφ ≡ I0+[e = (1/2)ė,ė,1/2].  
                               0                     

The above result can be also checked if we compute the difference:    
 (69)       I0-[e = (1/2)ė,ė,1/2] – I0+[e = (1/2)ė,ė,1/2] =  
                                        2 π 

              = – ė∫cosφ[1 – (ė2/4)cos2φ] – 5/ 3dφ = 0.   
                                         0           

The later equality is evident from the fact that cos(π + φ) = – cosφ.  
We conclude with the investigation of that particular case, 

corresponding to the nullification of the factorized multiplier e2(e – ė)[e +  
(n – 1)ė]. Now we return to the linear relation (32), which is useful under 
the condition e2(e – ė)[e + (n – 1)ė] ≠ 0. In order to obtain the factor 2e(e – 
ė)I1(e,ė,n), we multiply (32) by 2(e – ė). In this way, we shall get as a factor 
the left-hand-side of the relation (38), i.e. we use (38) to eliminate the 
integral I1(e, ė, n). The final result is a linear relation only between the 
integrals    I0(e,ė,n), I0-(e,ė,n) and I0+(e,ė,n):   

 

(70)       [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              × (n –2)(e – ė)(1 – e2)I0-(e,ė,n) +  
              + [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              × e(n + 1)[(e – ė)2 – 1]I0+(e,ė,n) +  
              + [– 2e2 – e4 + (– 2n + 4)eė + 2e3ė – (n – 1)(n – 2)ė2 – e2ė2] ×  
              [3e + (n – 2)ė]I0(e,ė,n) =  
              = 2(n – 2)(e – ė)[eė – e3ė + (n – 1)ė2 – (n – 1)e2ė2]I0-(e,ė,n) +  
              + 2(e – ė)[3e4 – (n – 2)eė + (n – 5)e3ė – (n – 1)(n – 2)ė2 –  
              – (n – 2)e2ė2]I0(e,ė,n) . 
   

After some algebra, the above equality may be put into a form, 
which represents I0(e,ė,n) as a linear combination of the integrals I0-(e,ė,n) 
and I0+(e,ė,n):  
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 (71)      [6e3 + 9e5 + 6(n – 2)e2ė + 3(n – 8)e4ė + 3(n – 1)(n – 2)eė2 – 3(2n – 7)e3ė2 +  
               + n(n – 1)(n – 2)ė3 + 3(n – 2)e2ė3]I0(e,ė,n) = (n –2)[ – 2e3 + e5 + e7 – 2(n – 2)e2ė +  
               + (2n – 1)e4ė – 3e6ė + (– n2 + 3n – 2)eė2 + (n2 – 3n – 1)e3ė2 + 3e5ė2 + n(n – 1)ė3 + 
               + (– n2 + n + 1)e2ė3 – e4ė3]I0-(e,ė,n) + (n + 1)[2e3 – e5 – e7 + 2(n – 2)e2ė –  
               – 2(n – 3)e4ė + 4e6ė + (n – 1)(n – 2)eė2 + (– n2 + 7n – 11)e3ė2 – 6e5ė2 +  
               + 2(n – 2)2e2ė3 + 4e4ė3 – (n – 1)(n – 2)eė4 – e3ė4]I0+(e,ė,n) ≡   
               ≡ (n – 2)(1 – e2)(e – ė)[– 2e2 – e4 – 2(n – 1)eė + 2e3ė – n(n – 1)ė2 – e2ė2]I0-(e,ė,n) + 
               + (n + 1)[1 – (e – ė)2]e[2e2 + e4 + 2(n – 2)eė – 2e3ė + (n – 1)(n – 2)ė2 + e2ė2] ×   
               × I0+(e,ė,n).  

 

This is the linear relation for which we are seeking. Clearly, it may 
be relevant to the problem of the elimination of I0(e,ė,n), only if the 
multiplier before this integral is different from zero. The investigation of the 
case when this does not happen is much more complicated than the situation 
with the other integrals. We shall not investigate in the present paper the 
possible ineligibility to apply formula (71). We only illustrate graphically 
(Fig. 1) for two concrete numerical values of the power n (n = +2.4 and n = 
– 0.4) that such a trouble really exists. 

 

Fig. 1. Two graphics of the coefficient D0(e,ė,n) ≡ 6e3 + 9e5 + 6(n – 2)e2ė + 3(n – 8)e4ė + + 
3(n – 1)(n – 2)eė2 – 3(2n – 7)e3ė2 + n(n – 1)(n – 2)ė3 + 3(n – 2)e2ė3 for two different 

(arbitrary chosen) values of the power n; top: n = + 2.4 and down: n = – 0.4. Both e(u) and 
ė(u) take values from – 0.99 to + 0.99 . 

 
5. Conclusions and comments 
   

The last paragraph 4 of the present investigation, in combination 
with the results in the earlier paper [15], clearly demonstrate that between 
the seven integrals Ik(e,ė,n), (k = 0-, 0+, 0, 1, 2, 3, 4) exist linear relations, 
which ensure the opportunity to eliminate four of them in the dynamical 
equation ([15], equation (4)), governing the space structure of the stationary 
elliptical accretion discs, according to the model of Lyubarskij et al. [7]. 
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More concretely, we are able to express the integrals I4(e,ė,n), I2(e,ė,n), 
I1(e,ė,n) and I0(e,ė,n) only by means of the integrals I0-(e,ė,n) and I0+(e,ė,n) 
(see definitions (1), (2) and (3)). It turn outs, that the later two integrals I0-

(e,ė,n) and I0+(e,ė,n) are linearly independent functions of the eccentricity 
e(u) and its derivative ė(u) ≡ de(u)/du for each orbit of the disc particles. 
This statement is quoted in advance and its proof will be given in a 
forthcoming paper. In such a way, the dynamical equation may be set free 
from some of the above cited integrals, appearing as a consequence of the 
azimuthal-angle averaging under the derivation of the dynamical equation in 
the research of Lyubarskij et al. [7]. This gives some simplification of this 
equation and may be eventually useful for a finding of its solution by means 
of analytical methods. Concerning the integral I3(e,ė,n), until now, we are 
not in a condition to eliminate it through the other integrals, using only 
linear relations. The availability of a linear dependence or independence 
between I0-(e,ė,n), I0+(e,ė,n) and I3(e,ė,n) will be a subject of a forthcoming 
analysis. It also remains to establish the utmost limits, under which we shall 
be able to attain, in our attempts to solve the dynamical equation of the 
elliptical disc by purely analytical methods. It is possible that this approach 
may turn out to be only partially successful. We hope that even in this less 
optimistic situation, the obtained analytical results will be useful for the 
more clear interpretation both of the intermediate calculations and the 
further necessary numerical simulations, leading to the finding of the final 
solution itself. Most probably, (and unfortunately), it seems that our 
simplifications of the dynamical equation, governing the space structure of 
the stationary elliptical discs ([15], equation (4) and references therein), will 
be relevant essentially only to the model of Lyubarskij et al. [7]. Other, 
much more complicated, and more realistic model of elliptical accretion 
discs, is developed by Ogilvie [18]. There are considered complex-valued 
eccentricities of the particle orbits. This mathematical approach allows to 
overcome the restriction of orbits sharing only a common longitude of 
periastron (i.e. all apse lines of the orbits are in line with each other), which 
limitation is an essential feature of the examined by us model of Lyubarskij 
et al. [7]. Unlike the later 2-dimensional analytical simulation, in the full 
model of Ogilvie ([18], section 3), the basic equations, governing the fluid 
disc, are written in 3 dimensions. In the case of elliptical discs of Lyubarskij 
et al. [7], the structure of the accretion flow is prescribed by one ordinary 
differential equation, while in the paper of Ogilvie ([18], section 4.4) a 
system of four ordinary differential equations must be solved. We have to 
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take into account, that the theory, presented in [18], goes considerably 
beyond the previous analytical treatments of the eccentric discs. 
Consequently, we have to expect that the mathematical treatment of the 
problem will require (in principle) more complicated ways, in order to solve 
the structure and the dynamics of the elliptical discs. Of course, resolving 
the more simple case, described in [7], we hope that at least some of the 
established properties will be presented also (in some sense) in the real 
discs, observed in the nature. It will be also useful even for the process of 
formulation of the more realistic accretion discs models, approaching the 
characteristics of these objects, investigated by the methods of the 
observational astronomy. It is clear, that including the considerations of new 
details or more precisely described processes (for example, including the 
vertical motions in the disc), will give a better agreement between the 
theories and observations. But working out of models, like that of 
Lyubarskij et al. [7], which are not very much appropriate to approximate 
the really existing accretion flows, indicated by the astronomical 
observations, is nevertheless an unavoidable step in the direction of their 
more complete and perfect understanding.   
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ТЪНКИ ВИСКОЗНИ ЕЛИПТИЧНИ АКРЕЦИОННИ ДИСКОВЕ  
С ОРБИТИ, ИМАЩИ ОБЩА ДЪЛЖИНА НА ПЕРИАСТРОНА. 

VI. OПРОСТЯВАНЕ НА ДИНАМИЧНОТО УРАВНЕНИЕ 
       

Д. Димитров 
 

Резюме 
         Ние продължаваме серията от статии, посветени на изследването 
и опростяването на динамичното уравнение, определящо структурата 
на стационарните елиптични акреционни дискове. Тези проучвания са 
в рамките, определени от модела на Любарски и др. [7]. В добавка към 
предишните проучвания, ние намираме още една зависимост между 
коефициентите на това обикновено диференциално уравнение от втори 
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ред, което ни дава възможност да елиминираме ефективно най-малко 
четири от тях. Това е в курса на нашия подход да намалим броя на тези 
функции, зависещи от ексцентрицитета, неговата производна и 
степенния показател n в закона за вискозита η = β Σ n. Те се появяват в 
уравннието в течение на процеса на усредняване (т.е., при 
интегрирането) по азимуталния ъгъл на елиптичните орбити. На 
сегашния стадии на изследванията, остават все още три интеграла от 
указания тип. С изключение на случая на целочислени стойности на n, 
техните аналитични решения не са известни. Във връзка с линейната 
зависимот или независимост на тези функции (това е предмет на 
нашите бъдещи проучвания), динамичното уравнение на елиптичните 
акреционни дискове може да бъде разцепено на една система от 
съответстващ брой по-прости уравнения за неизвестните 
ексцентрицитети на орбитите на частиците. Такъв един подход е в 
съответствие с нашата основна линия, прекарвана през споменатата 
серия от статии, да се постигне колкото се може по-голям прогрес в 
решаването на задачата с помощта на чисто аналитични методи. И 
само когато по-нататъшният напредък по този способ (ако крайното 
решение не е вече достигнато) става толкова сложен, че се оказва в 
безизходно положение, чак тогава да се използват числените 
моделирания.   
 


